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Abstract 

A diffraction geometry utilizing convergent X-rays from 
a polycapillary optic incident on a stationary crystal is 
described. A mathematical simulation of the resulting 
diffraction pattern (in terms of spot shape, position and 
intensity) is presented along with preliminary experi- 
mental results recorded from a lysozyme crystal. The 
effective source coverage factor is introduced to bring the 
reflection intensities onto the same scale. The feasibility 
of its application to macromolecular crystal data 
collection is discussed. 

1. Introduction 

Recent developments of polycapillary optics with X-ray 
bending capability (Kumakhov & Kumarov, 1990) has 
inspired a number studies to explore its applications 
(Xiao & Poturaev, 1994; Ullrich et al., 1995; Downing, 
Gibson & MacDonald, 1996). Polycapillary optics can 
collect X-rays from a divergent source over a wide solid 
angle and focus them onto the sample thus increasing the 
flux when compared with conventional data-collection 
methods (Owens et al., 1996). Conventional data-col- 
lection methods (e.g. most commonly oscillation) for 
macromolecular crystals use highly collimated X-ray 
beams in order to reduce spot overlapping on the detec- 
tor. This study explores the feasibility of applying con- 
vergent/divergent beam optics to macromolecular crystal 
data collection. Since the beams converge at the crystal 
and diverge afterwards, the words converge and diverge 
will be used, respectively, depending upon which side of 
the crystal the beam is being referred to. In this diffrac- 
tion method, the crystal remains stationary whilst it is 
exposed to the convergent beam. The crystal is rotated 
between exposures in order to get a 'complete' data set. 

Data collection for macromolecular crystals utilizing 
beams with one-dimensional convergence has been pro- 
duced (Wyckoff & Agard, 1977), but not developed as a 
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routine data-collection method. The technique used a 
stationary crystal exposed to X-ray from a line focus 
source. The resulting diffraction pattern resembled that of 
an oscillation film. In this current study, the crystal is also 
stationary, but it is exposed to X-rays from a poly- 
capillary optic with two-dimensional convergence. The 
resulting diffraction pattern resembles that of a summa- 
tion of screenless precession images at varying small 
precession angles. The main effect of beam convergence/ 
divergence on the diffraction spots is tangential elonga- 
tion for a flat detector at a swing angle of zero. Our 
approach to analyzing the beam-divergence effect can 
also be applied to other diffraction geometries. This 
article deals with the method of analyzing diffraction 
patterns of convergent beams, some simulation results, 
and preliminary experimental diffraction patterns. Prac- 
tical software for data processing has yet to be developed. 

2. Diffraction geometry 

In order to understand the diffraction pattern of a sta- 
tionary crystal irradiated by a monochromatic convergent 
beam, we shall divide the beam into many thin concentric 
conic shells. We will consider only the case where the 
beams focus at the crystal and are circularly polarized, 
and where there is no beam aberration. Throughout the 
text, the angle between the central 'straight through' 
beam and the most convergent beam is referred to as the 
convergence/divergence angle,/Zm~x; while the maximum 
angle between the two extreme beams of the source is 
referred to as the source angular spread. For a circularly 
symmetrical source, as in this case, they differ by a factor 
of two. 

For a shell of conic beams with convergent angle #, if 
one traces each beam successively around the conic shell 
surface and uses the observer's moving frame as the 
flame of reference, then the crystal processes around the 
direct beam with a constant tilt angle just as it does in a 
precession experiment with a collimated beam in the 
laboratory reference frame. Thus, the reciprocal lattice 
points pass through the Ewald sphere in the same way as 
in a precession experiment. If one uses a flat area detector 
to record ttie diffraction pattern, the pattern will resemble 
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that of  a screenless precession film with a subtle but 
important difference. In a precession experiment, the 
direct beam intercepts the detector at the same detector 
position while the detector processes with the crystal, 
however, in this case, each conic shell intercepts the 
detector with the direct beam positions forming a circle 
around the detector center with a radius of r = Dtan/z, 
where D is the crystal-to-detector distance. 

Summing up the diffraction from all the conic shells 
gives the diffraction pattern for a convergent beam 
measurement. Because of the similarity to the precession 
method, it has been referred to as spiral precession 
(Wyckoff & Agard, 1977). The precession method has 
been well studied and is understood (Buerger, 1964; 
Xuong & Freer, 1971), however, owing to the above 
mentioned important difference between the two meth- 
ods, the convergent beam diffraction pattern cannot be 
simply thought of  as a summation of pattems from suc- 
cessive screenless precisions of varying angles. 

For convenience of discussion, we will use a Cartesian 
system with A -1 as units such that the X axis coincides 
with the central beam, the Z axis coincides with the 
goniostat co axis and the origin is O* at the crystal, so that 
the central beam origin O has Cartesian coordinates of  
(_~-1,0,0), in the way a conventional Ewald diagram is 
constructed. Because of  the convergent beams, there are 
many beam origins lying on a sphere centered on O* 
with a radius of ~-1 within the convergent cone (Fig. 1), 
this circular sphere element will be referred to as the 
'sphere element of beam origins'. 

2.1. Reciprocal lattice points involved in diffraction 

For a convergent beam incident on a stationary crystal 
with a convergence angle /Zm~x, the region of the reci- 
procal space that is involved in diffraction is equivalent to 
that of  a screenless precession at a precession angle #max. 
Let us consider a conic shell of  the source with beam 
convergence angle of/z.  The X coordinates of  the beam 
origins are all equal to -(~.- lcos/z) .  Therefore, for any 

reciprocal lattice point P with its X coordinate, Xp, the 
necessary condition for diffraction to happen is, 

or 

X r + 1-1 cos/z _< 1 -~, 

Xp _< i-1(1 - cos lz). (1) 

If  this condition is not satisfied, (i.e., the distances 
between the reciprocal lattice point and the beam origins 
are all larger than ~-1) the point does not locate on any of 
the Ewald spheres centered on the beam origins hence it 
is not involved in diffraction. Secondly, for any reciprocal 
lattice point P, there is a plane passing through points O, 
O* and P. Out of  all the beam origins on the conic shell, 
the two extreme ones O' and 0"  (one is the nearest, the 
other most distant) are also located on this plane. The 
intersections of this plane with the two Ewald spheres 
centred on O' and O" are two circles with the same 
radius, ~-1 (Fig. 2). If  point P is involved in diffraction, it 
must lie in the shaded area between the two circles, or 
satisfy the relationship, 

10"el ___ )~-i ~ 10"PI. (2) 

As in the precession method, this shaded area is rota- 
tionally symmetrical around the X axis. IO'PI and IO"PI 
can be easily calculated by the law of cosines, 

10"el 2 = IO'O'12 + IO*PI 2 

- 2 1 0 " 0 " 1 1 0 " P I  c o s ( / O O * e  - tz) 

10"el 2 = 10"O'12 + IO*PI 2 

-210"O*llO*el cos(LOO*e + tz). 

Recognizing that IO'O*1 = ItT'O*l = X -1, IO*el = p and 
LOO*P = arc cos ( -Xp/p)  = r, we have 

10"Pi 2 _ ~-2 + p2 _ 2~- lpcos(f l  _ / z )  (3) 

10",pi2 _ i - 2  + p2 _ 2~- lpcos(f l  + /z) ,  (4) 

Y 

/ 

>- X (Central Beam) 

Fig. 1. The Cartesian coordinate 
system used. The origin is at the 
reciprocal space origin O*, with 
the X axis along central direct 
beam, and Z axis along the gonio- 
star 09 rotation axis. The conver- 
gent beam origins are shown as a 
sphere element within a cone of 
/-/'max convergent angle. The sphere 
element is centered on the recipro- 
cal space origin O* with a radius 
of )-1. Curvature of the sphere 
element is exaggerated, as is the 
convergence angle/Zmax. 
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where p = (Xp 2 q- yp2 q._ Zp2)l/2. It is easy to understand 
that larger At value is associated with a larger reciprocal- 
space coverage which contains the coverage for all 
smaller At's. Thus, we should use the At value of the 
outermost conic shell, Atmax, for all the above conditions, 
i.e., 

]O~p[2 _-- ~ -2  .q_ p2 _ 2)- lpcos(f l  _ Atmax) (5)  

[O, p12 = ;~-2 + p2 _ 2~-1 pcos(/3 + Atmax)- (6) 

Inserting (5) and (6) into (2) and rearranging leads to 

cos(/3 + Atm~x) < p~./2 < COS(/3 -- Atmax)" (7) 

2.2. Diffraction conditions o f  the source origins 

For a reciprocal lattice point P involved in diffraction, 
i.e. satisfying the above conditions [(7)], let us consider 
which part of the source satisfies the diffraction condi- 
tions. This is equivalent to finding the orientations of the 
crystals at which a reciprocal lattice point satisfies the 
diffraction conditions in moving crystal methods. For 
ease of discussion, we will define a cylindrical coordinate 
system (X, R, ~o) with origin at O* such that 

=Xp 
Rp = + '/2 

= arctan(Zp/ yp) 
5 = Rp cos  ~Op 
Zp = Rp sin ~Op 

.._ (Sp2 + ]72 -Ji- Z2)  1/2 = (Sp 2 -~- R2) 1/2 

(8) 

Similarly, for any beam origin, Os, on the conic shell 
surface, we have 

Xs = _~-1 cos At 
Ys = ~-1 sin At cos ~0s (9) 
Zs -- k -1 sin At sin ~Os. 

Then, the diffraction condition is that, 

(Xs - Yp) 2 + (Ys - yp)2 _at_ (Z s _ Zp)2 __ ~-2. (10) 

Inserting the cylindrical coordinate expressions into the 
above diffraction condition equation gives (c f  Appendix 
A), 

COS(~p --  qgs) - -  (/9 2 + 2Xp~. -1 cos  At)/(ZRp)~ -1 sin At). 

(11) 

Solutions for this equation exist if and only if the 
magnitude of the right-hand side of the equation is no 
greater than unity. The physical significance of this 
restriction is that for a particular reciprocal point P, there 
also exists a minimum value of At (cfi Appendix A), 

Attar. = I arccos(p~./2) -- ill, (12) 

source origins contributing to this reflection all lie in the 
conic shell with convergence angles ranging from Atmin to  

Atmax" 
Since the cosine function is an even function, there are 

generally two solutions for ~0 s, which we name as ~o, and 
~o x analogous to 'entry' and 'exit' points in precession. 
Then we have, 

> X 

X = )-1 (l-cosl~) 

Fig. 2. The region of reciprocal space involved in diffraction. The region 
is rotationally symmetrical around the Xaxis. Curvature of the sphere 
element is exaggerated, as is the convergence angle #m~x. 

qg,, = ~Op - arccos[(p 2 + 2Xp)~ -1 cos At)/(2Rpk -1 sin At)] 

(13) 

q9 x = % + arccos[(p 2 + 2XpX -1 cos At)/(2Rp)~ -l  sin At)]. 

(14) 

If one traces all the beams within the convergent beam 
cone, and uses the moving observer's frame as the frame 
of reference, then, for any reciprocal lattice point P 
involved in diffraction, at varying At angles between Atmax 
and Attain, the trace of points where P intersects the 
reflecting sphere forms two arcs of a planar circle. This is 
because of the constraints of the spot on the reflection 
sphere while maintaining a constant distance p from the 
reciprocal-space origin O*. The two arcs merge into one 
at At = Atmi. [(11) equals 1, or - 1 ,  hence ~o, = ~o x = ~op, or 
~0 n = ~0 x = ~0p + Jr]. When using a flat detector at 20 swing 
angle zero to record the diffraction, the spot shape shows 
nearly tangential elongation in such a way as to form a 
conic curve with its midpoint slightly closer to the 
detector center, i.e., the curvature center of the conic 
curve pointing away from the detector center. Details of 
the spot-shape analysis are given later. 
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2.3. Detec tor  coord ina tes  

In the laboratory frame of  reference, the reciprocal 
lattice point P is stationary while diffraction occurs from 
different parts of  the source. Thus, for every p. between 
]2ma x and #min, there are two source origins, O, and Ox, 
responsible for diffraction. At ~ = #rain, O, coincides 
with Ox (~0,, = ~p:). A typical polar coordinate plot of  ~o,, 
~o,~ against # is shown in Fig. 3. In the laboratory frame of  
reference, the traces of  O,'s and O~'s also form a planar 
circle, as explained later. The Cartesian coordinates for 
O,, at various ~ angles are simply, 

X .  = _~.-1 cos p 

Y. = Z -l s in#cos~p.  (15) 
Z. = ;~-1 sin # sin %. 

We will adopt the same Cartesian system for the real 
space, but with mm units. The line equations for the 
diffracted beam are then 

Xal(%-X.)= YJ(Yp- Y.):Zal(Zp-Z.). (16) 

At the same time, i f  a flat detector, situated at a distance, 
D, from the crystal with 20 swing equal to zero, is used to 
record the diffraction pattern, the plane equation for the 
detector is simply 

X a = D .  (17) 

Solving this simple set of  simultaneous equations (I 5) to 
(17) gives the detector coordinates (Y a, Zd), 

Yd = D[(Yp - Y . ) / (Xp  - X.)] (18) 

Z a = D[(Zp - Z , ) / ( X p  - X,)]. (19) 

For a detector with non-zero 20 swing angle, it is most 
convenient to have a new Cartesian system (x, y, z), 
which is related to the original Cartesian system by a 
simple rotation around the 20 swing axis. Therefore the 
vector OnP, or [(Xp - X , ) ,  ( Y p  - Y,),  (Zt, - Z,,)] 
expressed in the new Cartesian system ix, y, z) will be a 
simple matrix operation, i.e., 

xn,  [cos20 cosSin2  0 
%-Y.)/= - S o 2 °  (Yp Yn) • 
(Zp - Zu)_J 0 1 (Zp Z , )  

(20) 

After this coordinate transformation, the calculation of  
detector coordinates (Vd, Zd) takes exactly the same form. 
The calculation of  detector coordinates for the diffracted 
beam OxP is performed in the same fashion. 

3. Features of the diffraction pattern 

From the above algorithm, given the crystal space group, 
cell dimensions and known experimental conditions (e.g. 
source distribution, detector-to-crystal distance and 20 
swing angle), i f  one knows the crystal orientation, the 
locations and shapes of  the diffraction pattern can be 
predicted. However, the inverse problem, deriving crystal 
cell dimensions and orientation parameters from experi- 
mental diffraction patterns (commonly known as the 
indexing problem), is a little more difficult with a con- 
vergent beam than indexing still patterns generated by a 
well collimated beam. The reason is that the uncertainty 
in coordinates o f  the source origin contributing to a 
particular reflection makes it difficult to accurately 
determine the Cartesian coordinates of  the corresponding 

- Fig. 3. A gr-# polar plot of a typical 
reflection. The dark solid line 
represents the area contributing to 
the particular reflection. In this 
plot / / m a x  = 1.00 °, / A m i n  = 0 . 6 6 ' ; .  

The plot line is nearly straight. 
With much larger/Zmax values, the 
plots should have noticeable cur- 
vature. At JAmin, either ~o x = ~p, = ~Pr, 
(shown here), or ~o, = % = ~0p + Jr. 
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reciprocal lattice points, which are the key to a successful 
indexing procedure. This is, in a way, similar to the dif- 
ficulty in indexing oscillation images, where the oscil- 
lation angle at which a particular diffraction occurs is 
only known with an uncertainty of  the oscillation range. 
A simple solution to this problem is to take one or more 
still images with a pinhole which restricts the beam 
divergence. These images are to be used for indexing 
purpose only. I f  this method is not available, the situation 
is still not entirely hopeless. Before going into details of  
the diffraction vector determination, let us first analyze 
the shape of  a diffraction spot. 

3.1. Reflection spot shape 
It has been pointed out that the trace of  a reciprocal 

lattice point P passing the reflecting sphere at va ry ing /z  
angles, forms a planar circle in a moving frame. In the 
laboratory frame, the trace of  beam origins also forms a 
planar circle. These two facts are equivalent. However, it 
is more convenient to discuss the spot shape in the 
laboratory frame. 

As mentioned previously, for a convergent source, all 
the beam origins, O='s, are situated on a sphere centered 
on O* with radius of  k -1, and they also lie within a 
convergent cone with the cone axis coinciding with the X 
axis. For a reciprocal lattice point P involved in diffrac- 
tion, the condition that a beam participates in this parti- 
cular reflection is that the distance from P to the beam 
origin equals k -1. For this condition, one can construct 
another sphere centered on P, again with radius of  k -1. 
The intersection of  this sphere and the sphere element of  
beam origins is an arc which belongs to a circle on the 
plane perpendicular to and bisecting vector O * P  (Fig. 4). 
The radius of  this circle is [k -2 - (p/2)2] 1/2, where p is 
the magnitude of  vector O*P. Beams with their origins 
lying on this arc satisfy the diffraction condition, hence 
contribute to this particular reflection. This explains the 
conic nature of  the spot shape, however, the curvature of  
the spot becomes noticeable only when the beam diver- 
gence is large, e.g. 6 ° or more. In most cases, one sees 
only tangential elongation of  the spots. Hereafter, we will 
refer to this tangential elongation as the spot length, and 
the radial width as the spot width. 

/ / j . f  ~'~ " - , ~  ~, 

/ ~ . - ' "  " - . .  ',, ..... -~_~ii:::..~J[ " 

(Central Beam) 

\ ~ i  3 ~,;, ~ , ~ k ~  ,~i~ ~,, ̧ i ̧  ~ ! i~ :~  , , ~  ~ ~ , ~  ~ ~ ~ ! i ~ i ~ i  ;~?,,,~,,~i !~ ~ ! ; ~  

• i . 1 

\ ,  e '  

Fig. 4. A three-dimensional schematic diagram of diffraction geometry for a reciprocal lattice point P. Two spheres both with radius of k- t are 
shown by circular outlines, one of which centered on P (shown as a solid circle), the other centered on O* (shown broken circle). Beam origins 
lie on the latter within the convergent cone of angle /Zmax. The intersection of the two spheres is a planar circle of radius of [k -2 - (p/2)2] l/z, 
which is perpendicular to, and bisecting, the scattering vector O*R The dark line within the convergent cone shows the arc which is part of that 
planar circle. The angle spun over P by this arc is the angular spread of this particular reflection. The convergence angle/Zm~x is exaggerated. 
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3.2. Diffraction vector determination 

For ease of discussion, we will consider only the case 
with the detector 20 swing angle at zero. We know that 
the mid-point of a diffraction spot on the detector with 
coordinates (Yd, Zd) corresponds to a single source origin 
0 at #m~n- It is obvious that points O, O, O* and P all line 
on the same plane defined by the crystal origin (0,0,0), 
the film center (D,0,0) and the mid-point of the diffrac- 
tion spot (D, Yd, Za) in three-dimensional space. Thus, in 
terms of cylindrical coordinates, only 9p is known for the 
diffraction vector O'P,  i.e. qgp = arctan (Za/Ya). Rp and Xp 
still remain undetermined. There is also an angular 
relationship, 

/~)O*P - - / O 0 * P -  #a =/3  - / z  a, (21) 

where 

Ub = (-t-)#min, (22)  

the plus sign should be chosen when point P and O lie on 
the same sides of line OO* in the O0*P plane; the minus 
sign should be chosen otherwise (Fig. 2). The uncertainty 
in the sign and magnitude of #a in the above angular 
relationship is the source of difficulty in accurately 
determining the Cartesian coordinates of diffraction 
vector O*P. An intuitive approach would be to ignore 
this angle altogether, i.e., let / O 0 * P  = /3, or let #a = 
(+)#mi, = 0. This would give a maximum e r r o r  o f / /m in  in 
beam origin O. For a source with beam divergence, #m~x, 
significantly greater than 1 <:, the error propagating to the 
direction and magnitude of O*P might be too great to 
provide successful indexing. Nevertheless, for macro- 
molecular crystals, one usually would restrict the beam 
divergence angle to a maximum of around 1 ~: to avoid 
serious overlapping, (of the simulation results shown 
later). Furthermore, with the knowledge of the relation- 
ship between the spot length on the detector and/za, the 
situation can be improved by a spot selection process. 

The general feature of the relationship is that the 
angular spread of a diffraction spot tangential length 
approaches zero at #min = #max, i.e. /za = ( " [ - ) # m a x ,  and it 
approaches a maximum value of 2~max, which is the 
source angular spread, at #min near zero (detailed deri- 
vation of this relationship is given in Appendix B). The 
spot angular spread versus #a for a typical value of beam 
divergence J£max ----- 1.25 ~ at three different apparent 
scattering angle ct's is tabulated in Table 1 (for definition 
of apparent scattering angle cf. Appendix A). It can be 
seen that the o~ value has only a minor effect on this 
relationship. For any particular spot, the error in letting 
/ O 0 * P  = fl is ( + ) / Z m i n ,  which could range from nearly 
zero for the longest spot lengths to ( - ' [ - ) # m a x  for nearly 
zero spot lengths. However, if one chooses only those 
spots with their angular spreads larger than 80% of the 
source angular spread 2/Zmax, then the maximum error in 
le t t ing/O0*P =/3 is reduced to around 0.75 ° from 1.25 °. 
In many cases, this magnitude of error may be tolerable. 

Table 1. Spot angular spread versus #a at three different 
ot values 

All numbers in ° Numbers shown are for beam divergence /Zmax = 
1 . 2 5  ° . 

#6 a =  10 a = 3 0  a = 5 0  

-1.25 0.0000 0.0000 0.0000 
-1.24 0.3161 0.3167 0.3170 
-1.23 0.4460 0.4466 0.4474 
-1.22 0.5450 0.5458 0.5472 
-1.21 0.6281 0.6290 0.6303 
-1.20 0.7006 0.7019 0.7036 
-1.15 0.9806 0.9823 0.9843 
-1.10 1.1884 1.1905 1.1924 
-1.05 1.3575 1.3597 1.3621 
-1.00 1.5011 1.5034 1.5060 
-0.95 1.6260 1.6283 1.6309 
-0 .90 1.7361 1.7385 1.7413 
-0.85 1.8341 1.8365 1.8393 
-0.80 1.9220 1.9244 1.9270 
-0.70 2.0722 2.0745 2.0770 
-0.60 2.1940 2.1921 2.1982 
-0.50 2.2920 2.2938 2.2957 
-0 .40 2.3691 2.3706 2.3722 
-0.30 2.4273 2.4284 2.4296 
-0.20 2.4680 2.488 2.4695 
-0 .10 2.4920 2.4924 2.4929 

0.00 2.4998 2.4998 2.4998 
0.10 2.4916 2.4912 2.4908 
0.20 2.4672 2.4665 2.4656 
0.30 2.4262 2.4256 2.4236 
0.40 2.3676 2.3661 2.3645 
0.50 2.2902 2.2885 2.2864 
0.60 2.1920 2.1899 2.1876 
0.70 2.0700 2.0677 2.0652 
0.80 1.9196 1.9172 1.9146 
0.85 1.8317 1.8292 1.8265 
0.90 1.7336 1.7312 1.7283 
0.95 1.6235 1.6212 1.6183 
1.00 1.4988 1.4964 1.4938 
1.05 1.3553 1.3531 1.3506 
1.10 1.1863 1.1844 1.1818 
1.15 0.9789 0.9771 0.9751 
1.20 0.6993 0.6980 0.6970 
1.21 0.6267 0.6256 0.6244 
1.22 0.5439 0.5429 0.5416 
1 . 2 3  0.4448 0.4440 0.4427 
1.24 0.3151 0.3149 0.3140 
1 . 2 5  0.0000 0.0000 0.0000 

Spots with the angular spreads larger than the source 
angular spread are overlapped and should be discarded. 
Because a convergent beam brings several times more 
diffraction spots onto the area detector than does a well 
collimated beam, there will still be a sufficient number of 
spots to be used for indexing. For individual spots, their 
corresponding tZmm (or magnitude of #a) values can be 
roughly estimated according to their angular widths 
through calculations similar to that of Table 1. At the 
initial stage of a least-squares procedure, appropriate 
weights can be assigned to individual reciprocal vectors 
according to their uncertainties, i.e., ~mm. Prior to final 
least-squares refinement, the signs of #a could be 
determined, even for those spots with narrower angular 
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spreads, thus allowing for a more accurate determination 
of orientation and detector parameters. In the final 
refinement, information on observed spot lengths could 
also be included. 

3.3. Overlapping reflections 

With knowledge of the diffraction spot shapes, a 
practical two-step procedure to test for overlap between 
reflections can be set up. In the first step, for each 
reflection, the detector coordinates at the two ends of a 
spot are calculated, which correspond to diffraction at 
#max; and then, a rectangle for each spot is defined by the 
two extreme detector coordinates which contains an 
additional damping area allowing for spot broadening. 
Two spots are considered separated when the corre- 
sponding rectangles do not overlap. This method allows 
rapid initial screening for possible overlap. 

Owing to the tangential elongation, spots failing the 
above test can still be separated and are further tested in 
the second slightly more computationally intensive step, 
which calculates the minimum distance between two 
spots. For the detector at swing zero. i.e., 20 -- 0, each 
spot can also be expressed in polar coordinates with the 
origin at where the central direct beam intercepts the 
detector plane (in this case, the detector center). 

Thus, 

Y, = r i cos ~0, 

Z i = r i sin ~Pi, 

where, to a good approximation, r i can be considered as 
constant within the spot, while ~o; varies from ~0;,mi. to 
~O,,m~. Then, the distance between two points on two 
different diffraction spots is 

d = ( ~  +~--2r i r jcosA~po. ) l /2 .  (23) 

The minimum distance occurs at the minimum value 
for Acp0. When the two angular ranges, (¢P;.min, ¢P;.max) and 
(¢Pj.min, ¢Pj,m~,), overlap each other, then (Acp~j)min = 0, 
hence, dmi,, = Ir~ - rj[. Two spots are considered separated 
when the minimum distance, drain, is greater than a set 
value dictated by the spot broadening effects. 

In order to be able to measure the experimental inte- 
grated intensities by a profile-fitting procedure, and to 
separate spots which fail the first test but pass the second 
test, it is suggested that intensity profiles be expressed in 
polar coordinate boxes, in which Ar maintains more or 
less constant with a narrow r range in a sector of the film, 
while rAcp should be adjustable according to the pre- 
dicted spot tangential length. Intensity profiles expressed 
this way follow more closely to the natural spot shapes. 

4. Source distribution and diffraction intensities 

In any diffraction data collection method, an important 
factor is to bring all the reflections recorded at different 

geometrical conditions onto the same scale. The polar- 
ization factor here is the same as in conventional meth- 
ods, assuming a circular polarization. The Lorentz factor 
in moving crystal methods, which addresses the different 
time factors for different reflections does not exist here. 
In its place, there is a factor which addresses the fact that 
individual reflections have their unique parts of the 
source contributing to diffraction. It is, therefore, neces- 
sary to introduce an effective source coverage factor, or 
simply source factor. 

4.1. Effective source coverage factor  

From Fig. 3, one immediately realizes that the part of 
the source contributing to one particular reflection is that 
along the tp--/z curve. Hence, the effective source cover- 
age factor, L, can be expressed as the following line 
integral, 

//'max 

L = {IS(#, ~o,) + S(#, G)] 
~,'mi. (24) 

x [1 + (#~0',,)211/2/sin 20} d#, 

where we have recognized that qg', = d~0n(#)/d# = -~o'x; 
S(#,~0) is the source angular intensity distribution func- 
tion. Less obvious is the factor (1/sin20) in the line integral. 
When the source origin O s deviates from the q~--# 
curve laterally by a unit, the magnitude of OsP deviates 
from ~-1 by sin20 (in Fig. 4, the two sphere surfaces 
making an constant angle of 20 to each other at inter- 
section), therefore, the corresponding recorded intensity 
is inversely proportional to sin20. This is similar to the 
derivation of Lorentz factor in moving crystal methods, 
where the Lorentz factor is inversely proportional to the 
rate of a reciprocal lattice point passing the reflecting 
sphere. The derivative ~0',, or ~o' x are analytical but some- 
what complicated functions. In an actual calculation, one 
would prefer a simpler numerical form, i.e., 

L = Z S(#, ~0){(p.A~0) 2 + (A/~)Z}l/2/(sin 20), (25) 

where the summation is over the entire length of the qg--# 
curve. 

4.2. Source angular intensity distribution 

The source angular intensity distribution function, or 
source distribution, S(/z,~0) can be determined experi- 
mentally by an area detector at a long distance from the 
focal point. Rigorously speaking, the recorded intensity 
distribution of the direct beam is a convolution of the 
(angular) source distribution with the two-dimensional 
lateral intensity distribution at the focal point. The longer 
the distance, the smaller the convolution effect caused by 
the finite size of the focal spot, and the higher the angular 
resolution. The recorded values can either be used to 
calibrate the characteristic parameters of a model func- 
tion, or be used directly in the calculation of the source 
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factor, which will make the estimates more accurate at a 
higher computation cost. 

In cases that the source distribution can be approxi- 
mated by a radial function S(#), i.e., it possesses rota- 
tional symmetry, additional saving in computation 
ensues. One could tabulate the source factor L against a 
series of tXmin'S beforehand, the source-factor value for 
any particular reflection is evaluated by interpolation 
according to its #ram value. 

An ideal source distribution is one which shows small 
variation for convergence angle tt < //~max and which 
diminishes abruptly to zero beyond #~×. This require- 
ment can be achieved only with perfect optics (with no 
optical aberration). The optical aberration for an X-ray 
polycapillary lens is much higher than that for conven- 
tional optical lenses. One can only try to minimize the 
gap between iA.0.33 (where source distribution, S, is at one 
third of its peak value) and #o.o~ (where S diminishes, in 
practice). Here, the numbers 0.33 and 0.01 are chosen 
somewhat arbitrarily. Reflections with their #min values 
falling within this 'tail' of the source distribution curve, 
are more weakly exposed (corresponding to a small 
source factor), therefore, are generally less accurately 
measured. The tail of a Gaussian curve is fairly long 
(ranging approximately from 1.5o to 3.00"), therefore, it 
is far from ideal. The length of the tail can be shortened 
either by reducing optical aberration of the lens, and/or 
by improving collimation. 

4.3. Understanding crystal movement 

The effects of beam convergence/divergence on still 
diffraction patterns have been analyzed. This gives us a 
new perspective on moving crystal methods. Let us 
consider first the case of an oscillating crystal with nar- 
row mosaicity. For a reciprocal lattice point involved in 
diffraction before the crystal movement, a rotation 
around co (collinear with Z, i.e., normal beam condition) 
axis will cause its associated p - #  curve to shift (chan- 
ging ~tmin accompanied by small change in ~0p), or even to 
sweep out of the range of the sphere element of origins. 
At the same time, the movement may also bring some 
reciprocal lattice points, not involved in diffraction 
before the movement, into diffracting condition, or even 
sweeping through the entire range of the sphere element 
of origins. For the last case, a spot's tangential length 
varies from zero to a maximum value corresponding to 
the total source angular spread, and then back to zero 
again. Thus, the spot is nearly isotropic in dimensions 
and is considered 'full' by crystal scan in the sense that 
all parts of the source have been brought to diffraction 
condition for this particular reflection. Otherwise, dif- 
fraction spots are considered 'partial'. The estimate of 
partiality for each recorded reflection is important for 
bringing them onto the same scale. 

Certain reflections with their ~Op values close to rr/2 or 
3rr/2, co scans bring mostly tangential movement of the 

q)--g curves. The reflections are brought in and out of 
diffraction conditions by the co scans, while their q~-# 
curve movements are localized in a small region of the 
source. Only part of the source contributes to these 
reflections, therefore, they cannot be scaled properly and 
have to be discarded from the data set. In the case of a 
highly collimated beam with mosaic crystal, this effect of 
beam convergence is negligible. However, in the case of a 
more perfect crystal exposed to a more convergent beam, 
e.g., from highly convergent double mirrors, attention 
should be taken to discard the reflections recorded with 
their ~0p'S close to n/2 or 3rr/2. Fortunately, many of these 
recorded reflections are discarded by conventional data 
processing software for other reasons, such as Lorentz 
factors outside allowable range, total or partial blockage 
by the beam stop, or in the region of detector shaded by 
the crystal mounting capillary. For reflections with mul- 
tiple observations, they may also be among those rejected 
for unexplained (purely statistical) reasons. 

5. Simulation and preliminary experimental results 

5.1. Diffraction pattern 

Experimental diffraction patterns using a polycapillary 
optic (a prototype manufactured by XOS, Inc.) were 
taken for lysozyme crystal (chicken egg white, tetragonal 
form with cell dimensions a = b -- 79.3, c -- 37.9 A), at an 
arbitrary orientation. The beam convergence of the optic 
output is approximately 0.98 ~ (full width at half max- 
imum, FWHM). It was collimated by a modified 0.5 mm 
collimator with its back pinhole expanded to allow more 
convergent beams to pass through. The beam thus col- 
limated was roughly approximated by a radial Gaussian 
with la  = 0.133:. Two different crystal-to-detector dis- 
tances were used and the pattern recorded on an R-AXIS 
II imaging-plate detector (Figs. 5a and 6a). A Rigaku 
RU-300 Cu Kot rotating-anode generator operating at 
38 kV, 70 mA was used as the X-ray source with 1.5 min 
exposures. The MSC Biotex software was used to provide 
an orientation matrix for the crystal. Using the algorithms 
described previously, simulated diffraction patterns were 
also generated (Figs. 5b and 6b), with our developmental 
software. The orientation and conditions are the same as 
their experimental counterparts. In addition to the tan- 
gential elongation described previously, the software 
takes into account other diffraction spot broadening 
factors, such as beam focus spot size (crystal volume 
irradiated by the beam), and the mosaic spread of the 
crystal. The combining effect of these two factors is 
assumed to be a convolution of a Gaussian distribution 
function with a simple geometry form function. All cal- 
culations terminated at approximately 1% of peak values, 
thus #max was set at 30" = 0.40 :' (where the Gaussian 
curve reaches 1.1% of its peak value). Beam aberration, 
absorption, misfocusing and spectral dispersion effects 
are ignored. Except for the diffuse scattering background 
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(not modeled), there is striking agreement between 
experiment and simulation. 

Close examination of  the diffraction spots at different 
distances showed that the farther the crystal-to-detector 
distance, the larger the aspect ratio of  spot length over its 
radial width (Figs. 7a and 7b). This fact indicates that the 
spot broadening is caused mainly by the size of focus 
spot of the optical lens, rather than by the mosaicity of 
the crystal. Unlike tangential elongation and mosaic 
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Fig. 5. (a) Experimental diffraction pattern of a tetragonal chicken egg- 
white lysozyme crystal. A polycapillary lens was used on Rigaku 
RU-300 generator, running at 38 kV and 70 mA, exposure time 
1.5 min. Output beams from the polycapillary lens were collimated 
by a modified 0.5 mm collimator (see the main text), resulting a 
beam with approximate focus spot size of 0.36 mm diameter and 
0.40 ° maximum divergence (30- of a Gaussian). Ni (12.5 ~tm) and A1 
(25 lxm) filters were used to eliminate residual white and Cu Kfl 
radiation. The pattern was recorded by an R-AXIS II imaging plate 
with crystal-to-detector distance 130 mm; (b) Simulated diffraction 
pattern of  the same crystal at the same orientation. Focus spot size, 
divergence angle and crystal-to-detector distance are the same as in 
(a). A mosaic spread of  0.01 ° (10. of Gaussian) was used. 
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Fig. 6. (a), (b) Same as Figs. 5(a) and 5(b), respectively, except the 
crystal-to-detector distance is at 260 nm. 
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spread, which produce spot broadening proportional to 
the crystal-to-detector distance, finite size of  focus spot 
produces constant spot broadening over the distances. In 
the above experiment, the beam was collimated to 
0.36 mm diameter at the crystal. The simulated patterns 
(Figs. 5b and 6b) were generated using this spot size and 
a mosaic spread value of  0.01 ° ( l t r  o f  a Gaussian dis- 
tribution function). Detailed features of  the same set o f  
spots are shown in Figs. 7(c) and 7(d), which agree well 
with experiment. 

It should be pointed out that the mosaic spread used in 
the simulation is at least an order of  magnitude smaller 

than that commonly  found with conventional macro- 
molecular data-processing soRware packages. In fact, 
macromolecular crystals usually have narrow mosaic 
spreads, and careful rocking curve measurements on 
several different protein crystals indicated they amount  to 
around 0.004--0.030 ° ( l t r  o f  a Gaussian converted from 
the FWHM, i.e., FWHM = 2.3tr, Colapietro et al., 1992; 
Snell et al., 1995, 1997). The large mosaicity used with 
conventional data-processing sottware is actually a 
parameter to deal with a combination of  many different 
physical phenomena,  such as beam divergence, spectral 
dispersion, crystal size, etc. 
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Fig. 7. (a) Enlargement of an area of experimental pattern as marked in Fig. 5(a) (with crystal-to-detector distances D = 130 ram); (b) same as 
marked in Fig. 6(a) (D = 260 mm); (e) enlargement of an area of simulated pattern as marked in Fig. 5(b) (D = 130 mm); (d) same as marked in 
Fig. 6(b) (D = 260 mm). These figures cover diffractions within the same solid angle. The magnifications used are proportional to D. 
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The effect of beam divergence can be seen by com- 
paring Figs. 5(b), 8(a) and 8(b) (with convergence angles 
of 0.40, 1.00 and 2.00 °, respectively). It is easy to 
understand that the wider the beam divergence the more 
serious the overlapping effect. This is in much the same 
way as in oscillation or screenless precession methods, 
where wider oscillation/precession angles result in more 
pronounced overlapping erects. A unique feature of the 
convergent beam method is that the overlapping effect is 
most serious when the crystal is oriented near low index 

zone axes (Fig. 9), even more so with crystals of higher 
symmetry. This is owing to the fact that at these orien- 
tations, there are more reciprocal vectors with equal (or 
nearly equal) magnitudes involved in diffraction. Their 
diffraction spots all line on a circle with equal (or nearly 
equal) scattering angle. The tangential elongation effect 
of a divergent beam causes these spots to connect and/or 
overlap, hence merging into long arcs of a circle, or even 
a closed circle. It is therefore necessary to avoid col- 
lecting data close to low index axial orientations. 
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Fig. 8. Simulated patterns generated with the same conditions as in Fig. 

5(b) except that different maximum beam divergence angles were 
used. (a) //.max = 1.00 °, overlapping is more serious than Fig. 5(b), 
however, majority of the spots still can be separated; (b) /Zmax = 
2.00 °, ovedapping is very serious. Source distributions are all 
assumed to be radial Gaussian truncated at 3tr. 

5.2. Simulated data collection 

Another  type o f  s imulat ion has also been carr ied out, 
wh ich  calculates  the data coverage o f  a series o f  still 
diffract ion pictures for a l y sozyme  crystal  wi th  the same 
misse t t ing  angles  as those for the exper imenta l  condi-  
t ions in Fig. 5(a). The  crystal - to-detector  dis tance was  set 
at 10 cm; the mosa ic  spread at 0.01 °, beam focus spot 
size at 0.36 m m  diameter;  the beam source profile was  
as sumed  as a radial  Gauss ian  dis tr ibut ion funct ion  trun- 
cated at 3or. The  successive exposures  were  taken at an 
increment  o f  2.0 ° wi th  a beam divergence o f  1.0 ° (total 
source angular  spread 2.0°). The  results  o f  this s imula t ion  
are tabulated in Table 2. The over lapping effect is not  a 
p rob lem for a major i ty  o f  the exposures ,  except  at the 
beg inn ing  o f  the series o f  exposures ,  wh ich  is close to a 
low index zone axis. Over  93% o f  a comple te  data set, up 
to 2.0 A resolut ion,  can be col lected wi th  on ly  20 still 
images.  
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Fig. 9. Simulated pattern generated with the same conditions as in Fig. 
8(a) except that the crystal is reoriented with (0,0,1) direction along 
X axis. The serious overlapping effect at low index zone axes is the 
characteristics of the divergent beam and high symmetry of the 
crystal. Because of serious overlap, it seems that the spots are curved 
inward, though they are actually elongated tangentially (strictly 
speaking, they are conic and curved outward). 
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Tab le  2. Data coverage of  a simulated data-collection run .for a tetragonal chicken egg-white lysozyme crystal 

The crystal was assumed mounted with the same missetting angles (-43.57, 7.96, 1.12 °) as those of the conditions in Fig. 5(a). The crystal-to- 
detector distance is set at 10 cm; mosaic spread at 0.01 °, beam focus spot size at 0.36 mm diameter; source distribution is assumed as a radial 
Gaussian distribution function truncated at 3c~. The successive exposures are taken at an increment of 2.0" with a beam divergence of 1.0 ° (total 
source angular spread 2.0 °). 

(a) Data coverage for individual still images 

wt Observations Ro l  R~2 R~3 Independent (%Shell) Summed (%Cumul) 

5.0 2053 30 61 672 1180 17.4 1180 13.8 
7.0 2048 26 115 665 335 3.7 1515 17.7 
9.0 2106 26 59 677 657 7.2 2172 25.3 

11.0 2046 27 0 655 668 8.4 2840 33.1 
13.0 2050 31 0 627 640 8.8 3480 40.6 
15.0 2068 28 0 662 600 7.8 4080 47.6 
17.0 2074 29 0 691 520 6.6 4600 53.7 
19.0 2069 25 0 692 453 5.4 5053 59.0 
21.0 2074 24 0 649 419 4.4 5472 63.9 
23.0 2040 30 0 656 337 3.3 5809 67.8 
25.0 2077 28 0 658 280 3.1 6089 71.1 
27.0 2101 29 0 668 290 3.1 6379 74.4 
29.0 2057 27 0 651 261 2.9 6640 77.5 
31.0 2050 25 0 659 234 2.8 6874 80.2 
33.0 2055 29 0 639 231 2.5 7105 82.9 
35.0 2061 27 0 652 220 2.2 7325 85.5 
37.0 2053 27 0 657 205 2.1 7530 87.9 
39.0 2060 29 0 645 180 1.9 7710 90.0 
41.0 2089 27 0 679 157 1.7 7867 91.8 
43.0 2059 29 841 368 128 1.8 7995 93.3 
Total 41290 553 1076 12922 N/A N/A 7995 93.3 

(b) Resolution breakdown of data coverage 

D,,,t Observations Ro l  RO2 R~3 Independent (%Shell) Summed (%Cumul) 

5.43 2123 0 15 693 432 88,2 432 88.2 
4.31 2166 0 11 741 435 96.2 867 92.0 
3.76 2109 0 14 695 429 97.5 1296 93.8 
3.42 2104 0 7 716 423 95.7 1719 94.2 
3.17 2113 0 8 698 411 95.8 2130 94.5 
2.99 2161 0 14 725 417 95.6 2547 94.7 
2.84 2082 0 39 680 409 96.2 2956 94.9 
2.71 2047 0 65 636 397 94.3 3353 94.9 
2.61 2074 0 75 611 416 96.3 3769 95.0 
2.52 2019 0 82 577 399 95.2 4168 95.0 
2.44 2112 0 98 631 398 93.6 4566 94.9 
2.37 1965 0 63 590 396 95.2 4962 94.9 
2.31 2102 0 76 646 400 93.9 5362 94.9 
2.25 1917 0 79 603 381 93.8 5743 94.8 
2.20 2137 0 83 681 401 93.3 6144 94.7 
2.15 2031 0 79 661 384 92.3 6528 94.5 
2.11 1983 0 73 612 379 91.8 6907 94.4 
2.07 2079 32 71 647 386 90.8 7293 94.2 
2.03 I989 174 68 542 364 88.3 7657 93.9 
2.00 1977 347 56 537 338 81.6 7995 93.3 

Total 41290 553 1076 12922 N/A N/A 7995 93.3 

t Rej 1, reflections too close to the edge of (or completely 
than 30% of averaged values; 09 in ° Dram in/k. 

off) the detector; Rej2, reflections overlapped; Rej3, reflections with source factors less 

R e f l e c t i o n s  wi th  v e r y  smal l  e f f e c t i v e  s o u r c e  c o v e r a g e  

f ac to r s  c a n n o t  be  m e a s u r e d  accura te ly .  T h e s e  r e f l ec t ions  

c o r r e s p o n d  to r e c i p r o c a l  la t t ice p o i n t s  too  c l o s e  to the  

l imi t ing  s u r f a c e  o f  the  r eg ion  o f  the  r ec ip roca l  s p a c e  that  

is s t i m u l a t e d  b y  the  b e a m .  i.e. the  //,rain v a l u e s  o f  t he se  

r e f l ec t ions  are v e r y  c l o s e  to the  m a x i m u m  c o n v e r g e n c e  

ang le  #rnax o f  the  b e a m .  A r e j ec t ion  c r i t e r ion  has  b e e n  

a p p l i e d  such  that  r e f l ec t ion  spo t s  w i th  the i r  e f f ec t i ve  

s o u r c e  c o v e r a g e  f ac to r  less  than  3 0 %  o f  the  a v e r a g e  v a l u e  
o f  the  ent i re  d e t e c t o r  f r a m e  are  r e jec ted .  Th is  is e q u i v a -  

lent  to a c r i t e r ion  b a s e d  on  a set  u p p e r  l imit  for  #min to be  

a c c e p t e d .  U s i n g  this  cr i te r ion ,  a fair  a m o u n t  o f  da ta  is 

r e j ec ted .  Th is  is b e c a u s e  a G a u s s i a n ,  t r u n c a t e d  at 3o', is 

a s s u m e d  for  the  s o u r c e  d i s t r ibu t ion ,  w h i c h  has  a long  tail. 

Wi th  r e d u c e d  lens  op t i ca l  a b e r r a t i o n  and  be t t e r  c o l l i m a -  

t ion this  s i tua t ion  can  b e  i m p r o v e d .  
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6. Discussion 
We have so far established the general features and the 
interpretation of diffraction pattems of a stationary 
crystal from a convergent source. Simulations were car- 
ried out for a macromolecular crystal (tetragonal, chicken 
egg-white lysozyme), which showed that with a con- 
vergence angle (in this case, total source angular spread 
around 2.0°), diffraction spots can be separated and 
interpreted. For crystals with longer unit-cell axes nar- 
rower source angular spread should be used. At this beam 
divergence range, the intensity on the crystal integrated 
over the entire convergence angle is many times of that of 
a highly collimated beam from the same X-ray source. 
This should generally speed up the data collection by as 
many folds. In order to be able to fully utilize the beam 
while keeping diffraction spots separated the beam 
divergence should be made adjustable, e.g., by using a 
changeable pin-hole device with a series of different sizes 
of diameters. With this device, an optimal beam diver- 
gence angle can be selected according to the particular 
crystal system to be studied. 

An important factor which has a profound effect on 
spot spread and overlap is beam focus spot size. The 
simulation was carried out with beam focus spot size of 
0.36 mm diameter. It is now technically possible to 
achieve a beam focus spot size of 0.1 mm diameter, and 
in the future perhaps even less. Just as in the conventional 
rotation (oscillation) method, where a wider w scan 
brings in more reflections into reflection with a lower 
signal/background ratio, a wider source angular spread 
brings in more reflections into diffraction but at a price of 
lowered signal/background ratio. As for the data cover- 
age, this method is very similar to that of a screenless 
procession method, which has the advantage of a smaller 
'blind' cusp region of the reciprocal space as compared 
with the oscillation method, and the disadvantage of not 
being able to explore the reciprocal space in a more 
systematic way for successive exposures with one rota- 
tion axis. 

Because of serious overlap of diffraction spots at 
orientations close to low index zone axes, a goniostat 
with two or more axes designated for orienting the crystal 
can ease the process of reaching desired orientations for 
exposure. Rotating the crystal around a single goniostat 
axis between exposures usually results in the collection 
of many reflections (or their symmetry mates) repeatedly. 
The most efficient way to collect a 'complete' data set is 
to find out the minimum number of exposures required 
and their corresponding crystal orientations beforehand. 
Due to the huge number of possible crystal orientations, 
and particularly due to the combinatorial nature of cal- 
culation, this is a prohibitive task. Nikonov & Chirgadze 
(1985) proposed probably the next best thing - a pro- 
cedure of determining an 'optimum sequence' of expo- 
sures, in which the optimization is done only at each step 
of the sequence for maximum efficiency. Implementation 
of this procedure for the current method is under way, 

which takes into account the Laue group symmetry of the 
crystal, overlap effect, low source factor rejection and 
goniostat movement limitations. More importantly, 
efforts are under way to develop computer programs for 
indexing, integration and scaling of the recorded images. 
This will allow a more thorough comparison of the data 
acquired by the proposed method against those by con- 
ventional methods. 

The use of a convergent beam with a stationary crystal 
allows simultaneous data collection over the range of the 
convergence angle. This decreases the exposure time 
required to give a complete data set when compared with 
the conventional oscillation/rotation method. Our analy- 
sis shows that interpretation of the resulting diffraction 
pattems is possible and that this technique could have 
important application in macromolecular X-ray crystal- 
lography. It may also be important for other diffraction 
applications such as microdiffraction, strain and texture 
measurements in thin films, etc. Such application will be 
described in other publications. 

A P P E N D I X  A 
Derivation of  diffraction condition for source origins 

As shown in the main text, [(11)], that for reciprocal 
lattice point P the diffraction condition for the source 
points is 

(Xs - Xp )  2 -'[- (Ys - yp)2 + (Z s _ Zp)2 __ ~.-2, (26 )  

where coordinates with subscripts s are for those of 
source origins Os, which lie on the conic shell with 
convergent angle #, while those with subscripts p for 
reciprocal lattice point P. By inserting the cylindrical 
coordinate expressions [cf (9)], one has 

~ - 2  -_ (Xp --[-- ~ -1  c o s  # ) 2  

+ (Rp cos ~Op - ~.-1 sin # cos ~o,.) 2 

+ (Rp sin ~op - ~.-1 sin # sin ~0s) 2 

= X 2 .3t_ ~ - 2  c o s  2 # 31 - 2Xp~.-1 c o s  ]z 

+ Rp z cos z ~0p + ~.-2 sin z tz COS 2 q9 s 

-- 2 Rp cos qgp~. -1 sin/z cos ~0 s 

+ R 2 sin 2 ~Op + ~-2 sin 2 # sin z ~0 s 

- 2Rp sin ~Op~. -1 sin # sin ~0 s. 

Recognizing that 

2 p2 X 2 + R 2 COS 2 qgp "[- Rp sin 2 ~op - 

(27) 

cos 2/x + sin 2 # COS 2 q3 s -~- sin 2 # sin 2 tp,,. = 1 

cos 9p cos 99 s + sin ~op sin ~o s = cos(~op - ~os), 
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then we have (11), 

cos(qgt, _ ~p,) = (p2 + 2Xj,,k-i cos u)/(2RpX-1 sin #). 

(28) 

The value of a cosine function varies from - 1  to +1. 
Therefore, for a solution of the above equation to exist, 
the following conditions should be satisfied, 

- 1  < (p2 _]_2Xp)-I cosll)/(2Rp~.-1 sin/z) < 1, (29) 

o r  

-2Rp,k -t sin/. t<p 2 -t-2XpX -1 cos/z<2R1,X-I sin/z. 

(30) 

Rearranging gives 

- (Xp /p)cos~  - (Rp /p ) s in#  <_ pX/2 
(31) 

_< - (Xp/p) cos g + ( R p / p ) s i n g .  

Recognizing that - X p / p  = cos/3 and R~,/p = sinfl we have 

cos ~ cos/~ - sin fl sin tt < pX/2 

_< cos/3 cos # + sin/3 sin # 

or ,  

cos(/3 + ~) < pX/2 < cos(/3 - / . t ) .  (32) 

Re-casting in angular form leads to 

- l z  < arccos(pX/2) - / 3  < tt, (33) 

or simply 

U > I arccos(pX/2) -/31. (34) 

Hence, we have (12), 

Umin = I arccos(pX/2) -/31. (35) 

APPENDIX B 
Relationship between angular spot spread and p~ 

For an area detector at distance D from the crystal with 
20 swing angle zero, and a spot with its midpoint coor- 
dinate of (Ya, Za), let the apparent scattering angle ot be 
the angle between the scattered beam and the central 
direct beam (note not the same as the beam responsible 
for diffraction), thus, 

ot = arctan[(Y,~ + Z~)'/2/D]. (36) 

The midpoint of the detector spot (corresponding to/z 
= 12min) also gives the %, angle of the diffraction vector 
O'P,  

~Op = arctan(Z, f f  Yj). (37) 

However, the corresponding source origin O remains 

uncertain. If we denote/za such that, 

~ = (+)Umm 

X,~ = - 4  -1 cos ~,~ (38) 

R a = X -l sin/z s, (39) 

where coordinates with subscript 0 are for the beam 
origin 0 responsible for diffraction at ]-£min, and here Ra 
carries a sign with sin/za, dependent on whether or not 0 
is on the same side with P of OO* line in the plane 
defined by O0*P. From the apparent scattering angle ot 
measured by the mid-point spot detector coordinates, 
which gives the direction of OP, and knowing the mag- 
nitude IOPI = X -x, we have 

@ = x-l(cosot - cos Ua) (40) 

R r = X-I(sinot + sin kta) (41) 

and obviously, 

Yp = X-l(sinot + sin #a) cos q9 p (42) 

Zp = X-l(sin ot + sin #a) sin %. (43) 

On the right-hand sides of the above expressions (40-43) 
for reciprocal lattice point P, only #a is unknown. Now, if  
A is the tangential length of the detector spot, and ~ the 
separation of 0,, and O,. at/Zm~x, from the relationship for 
similar triangles, we have the angular spread of the spot 
length, 

A = g/X- '  = A / ( D  2 + Y~ + Z  2 + A2/4)  '/2 

or ,  

~ 2 / X - e  = A 2 / ( D  2 ..+_ },,2 -Jr- Z 2 -[- A2/4) = A x, ( 4 4 )  

where we have recognized that IO~PI = IOxPI = ~-x. On 
the other hand, ~ can be expressed as a function of #a as 
shown below. 

We know that at /z  = /Zm~x the following relationship 
exists, 

= 2X -l sinLtma x sin(qgn -- qgp)ll,m,x , 

where the sign L,m,x means evaluated at 12max. O r ,  

62/)~ -2  = 4 sin e Umax[1 - -  COS2((~n - -  %)]/Zmax ]. (45) 

Inserting expression (11) [same as (28)] for cos(~0,, - 
~pp) leads to 

~ 2 / )  -2  __ A 2 = 4 sin 2/~max[1 - -  c o s Z ( ~ n  - -  ~ p ) ] #  .... ] 

= ~214~.-2 sin 2/Xma x -- R~ - -  X;4/Rp2 

- 4x ), . . . . .  / R ;  - 

- -  4 g p ~ .  -1  c o s / e m a  x - 4X3~ .  -1 c o s  # m a x / R 2 ] .  

(46) 
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Inserting expressions (40) and (41) for Xp and Rp leads to 

A2(sin o~ + sin/zz) 2 - 4 sin 2 #max(Sin ct + sin #z)2 

+ (sin ot + sin/za) 4 + (cos ol - c o s  #6) 4 

+ 4(cos c~ - cos/x~) 2 COS 2 ~max 

+ 2(cos ot - cos #~)2(sin ot + s i n  [£6) 2 

+ 4(COS C~ -- COS #~)(sin c~ + sin #6) 2 cos #max 

+ 4(cos c~ - cos/z,~) 3 cos/Zma x - -  O. (48) 

Or, 

A2(sin ot + sin/z,~) 2 - 4 sin 2 #max(Sin Ot 4- s in/~)2 

+ (sin ol + s i n  # b )  4 -31- ( c o s  ~ - c o s  [2b) 4 

+ 4(cos c~ - c o s  ]zb)  2 c o s  2 /d.ma x 

+ 2(cos o~ - cos #6)2(sin ot + s i n  #b) 2 

+ 4(COS O~ -- COS #6)(sin ct 4- sin #6)2 cos #ma~ 

+ 4(cos c~ - cos/z~) 3 cos ]2ma x - -  0. (48) 

This equation can only be solved by numerical meth- 
ods for #0. Unfortunately, there usually are two solutions 
which satisfy this equation. From Table 1, one can see 
that the spot angular spread is nearly symmetrical around 
/za = 0. 
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